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January 13, 2003

Abstract

In this paper we present some theoretical results which show how
the simulation from a mixture distribution with components sup-
ported by subspaces of different dimension can be reformulated in
terms of drawing from an auxiliary continuous distribution on the
larger subspace and appropriately transforming the simulated auxil-
iary deviates. Motivated by the importance of enlarging the available
Monte Carlo Markov chain (MCMC) techniques for coping with in-
ference on varying dimensional parametric spaces, we show how our
results can be fruitfully employed in some relevant types of inferential
problems such as (a) model selection/averaging of nested models and
(b) regeneration of Markov chains for evaluating standard deviations
of estimated expectations derived from MCMC simulations. We il-
lustrate the effectiveness of our approach and some of its appealing
features compared to other currently available techniques.

1 Introduction

The use of Monte Carlo Markov chain (MCMC) algorithms has become more
and more important in the last decades as the main tool to cope with statis-
tical problems where a distribution is known up to a proportionality constant
and some approximation of its features is sought for. In particular the large
availability of easy-to-implement algorithms such as the Gibbs sampler and
some of its variants allowed for an exponential growth of the routine applica-
tion of simulation-based Bayesian inference. The theoretical development of
these techniques and the enlargement of their scope of application have been
boosted by their extension to distributions supported on subspaces of vari-
able dimension starting from Carlin and Chib (1995) and the Reversible Jump
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(RJ) of Green (1995). Since then a lot of research efforts have been devoted to
enlarging the availability of transdimensional simulation techniques as well as
the applicability of the available ones and also to trying to overcome some of
their intrinsic difficulties; another crucial point still open to improvements is
related to finding effective diagnostics to monitor appropriate convergence of
the chain. Currently there is a substantial presence in the literature of appli-
cations of Bayesian inference via MCMC methods in multimodel transdimen-
sional settings, such as those arising in model selection/averaging. However,
it is apparent that a lot of expertise with these techniques is needed for a
safe and successful implementation and often problem-specific difficulties can
arise (Godsill and Troughton; 1998; Dellaportas et al.; 2002; Rotondi; 2002).
There is a clear need in the Statistics community for easy-to-implement,
generic approaches to Bayesian multimodel inference. This is also testified
by current ongoing research mainly aimed at proposing improved variants of
RJ (Al-Awhadhi et al.; 2001; Brooks et al.; 2003; Green; 2003).

The most popular approach to multimodel MCMC is currently RJ. Al-
though the method is certainly very flexible and some attempts have recently
been made towards devising effective proposal distributions (Brooks et al.;
2003), it is widely recognized that efficient implementation of RJ is problem-
specific (Rotondi; 2002) and convergence diagnostics of the simulated chain
deserve special care (Brooks and Giudici; 1999, 2000; Castelloe and Zim-
merman; 2002). In fact, the more recent Birth-and-Death (BD) approach,
proposed by Stephens (2000), was motivated, at least in part, with the need
for a strategy which simplifies the problem of specifying well calibrated moves
together with the corresponding need of evaluating the Jacobians of the re-
lated one-to-one tranforms. When cleverly implemented, as in the examples
provided by Stephens, BD is effective and as efficient as RJ. A detailed com-
parison of the two approaches in the context of mixture model inference is
contained in Cappé et al. (2001). However, also the BD approach suffers
from the lack of efficient natural ways of specifying the birth proposals in a
general context.

In this paper we develop the theoretical basis for an original, more auto-
matic approach to multimodel MCMC for the nested-model case. The paper
focuses on the problem of generating a sample from a distribution µ̄ – typ-
ically the posterior distribution of a parameter of interest – supported by a
sequence of nested hyperplanes of RK . It is first shown how to construct,
in a natural fashion, an absolutely continuous distribution τ̄ on RK and a
transformation φ from R

K to itself such that τ̄φ−1 is equal to the target dis-
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tribution µ̄. In this way, even if one is not able to simulate directly from τ̄ ,
one can easily generate a finite realization ζ1, . . . , ζN of an ergodic Markov
chain having limiting distribution τ̄ , and then approximate a sample from µ̄
with φ(ζ1), . . . , φ(ζN). One of the advantages of this approach is that it al-
lows to monitor convergence and mixing properties of the simulation output
through the analysis of the untransformed sample ζ1, . . . , ζN using standard
tools of fixed dimension MCMC. We also show how to use the same basic
device as a building block to construct a Markov kernel with limiting distri-
bution µ̄ directly in the original parameter space and how this can be useful
within a Gibbs sampler (Section 3) and for simulating a regenerative chain
(Section 4).

The distinguishing feature of our proposal is the automatic transforma-
tion of the mixture of the posterior densities appearing in the nested models
into a comprehensive global density which has the advantage of offering a
geometric intuition of the jumps between different models which are to be
simulated. One of the pragmatic motivations of proposing a radically differ-
ent simulation strategy stems from realizing that RJ often lacks an automatic
way of being implemented and we believe the availability of other effective
automatic alternatives might help more and more researchers to entertain
nested models in a fully Bayesian fashion through MCMC approximations.
Furthermore, with the approach we propose, there is no need to evaluate
Jacobians of involved transformations.

The layout of the paper is as follows. In Section 2 we present the main
theoretical results that justify the proposed method. Section 3 illustrates,
in the controlled context of nested linear model setting the performance of
our proposal for a simulation-based Bayesian inference. The choice of this
relatively simple model for illustrative purposes is suggested by the availabil-
ity, when using a natural conjugate prior, of posterior model probabilities.
This allows to compare the true posterior with the simulation results based
on our proposed method as well as on alternative methods. For the data
analyzed in this example, our method gives a reliable estimate of the poste-
rior distribution, while RJ performed worse, at least in terms of precision.
Comparison in terms of computational time are more in favor of RJ, but we
believe that a satisfactory precision is of primary importance. In Section 4
we explore a different kind of application of the theoretical results developed
in Section 2: starting from an idea by Brockwell and Kadane (2002), we show
an alternative algorithm for simulating a regenerative Markov chain with a
prescribed limiting distribution.
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2 Main results

We start by illustrating the core idea in the simple case of an unnormalized
probability distribution for θ, having an absolutely continuous component
and a component degenerate at one point. In what follows, for sake of no-
tational simplicity, we assume that point to be the origin. Let ηK and δK
denote K-dimensional Lebesgue measure and Dirac measure (concentrated
on the origin of RK), and let f0 be a measurable positive function defined on
R
K and fK be a constant. Consider the measure on RK

µ(dθ) := f0(θ)ηK(dθ) + fKδK(dθ), (1)

that we assume to be finite, but not necessarily a probability measure. We
use the notation µ̄ for the probability proportional to µ, i.e.

µ̄(·) =
µ(·)
µ(RK)

.

Our first goal is to determine an absolutely continuous measure τ on RK

and a function φ : RK → R
K having the property that τφ−1(B) = µ(B) for

every Borel set B. Note that this implies that µ(RK) = τ(RK). Moreover, if
a random vector ζ̃ has distribution proportional to τ , then the distribution
of θ̃ = φ(ζ̃) is proportional to µ. In order to define the function φ, let
BK(r) := {ζ ∈ RK : |ζ| ≤ r} be the K-dimensional closed ball of radius r,
centered at the origin, and consider the radial contraction

ψK(ζ; r) :=
ζ

|ζ|
(
|ζ|K − rK

)1/K
, ζ ∈ RK , ζ /∈ BK(r).

The inverse function, defined for θ 6= 0, is the radial expansion

ψ−1
K (θ; r) :=

θ

|θ|
(
|θ|K + rK

)1/K
.

It is easy to check, considering polar coordinates in RK , that for any r, both
ψK and ψ−1

K preserve Lebesgue measure. Thus, loosely speaking, one can
use ψ−1

K to move the absolutely continuous part of µ away from the origin,
leaving an empty ball BK(r), and then spread the mass fK corresponding to
the degenerate component of µ into this emptied ball. More formally, define

g(ζ) :=

{
cfK if ζ ∈ BK(r),

f0(ψK(ζ; r)) if ζ /∈ BK(r),
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with c and r positive constants satisfying cηK(BK(r)) = 1. Then, taking
τ(dζ) := g(ζ)ηK(dζ) and

φ(ζ) :=

{
0 if ζ ∈ BK(r),

ψK(ζ; r) if ζ /∈ BK(r),

we have exacly what we were looking for, namely an absolutely continuous
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Figure 1: Plots of f0 and g in the one-dimensional case (K = 1). The area
of the dotted region is equal to fK.

measure τ and a function φ such that τφ−1 = µ. A convenient choice for c

and r is c = f0(0)/fK and r = 1√
π

(
fKΓ(K

2
+1)

f0(0)

) 1
K

, for in this way the continuity

of f0 is inherited by g. A graphical illustration of the procedure when K = 1
is provided in Figure 1.

We now consider formally the more general case of a mixture of two
nested components, one having full support, and the second supported by a
hyperplane defined by a certain number of the last coordinates being equal to
zero. We will write θ = (θk,1, θk,2) for the generic point of RK , with θk,1 and
θk,2 being, respectively, the first h = K−k and last k components. Consider,
for a fixed k in {1, . . . , K}, the finite measure

µ(dθ) := f0(θ)ηK(dθ) + fk(θk,1)ηh(dθk,1)δk(dθk,2), (2)

where f0 and fk are measurable positive functions defined on RK and Rh,
respectively. To clarify the notation, we note that the integer indexing each
density is the dimension of the degenerate part of the corresponding compo-
nent. The next theorem shows how the function ψk can be used to transform
the measure (2) into an absolutely continuous measure. The reader will re-
alize that the idea sketched at the beginning of this section corresponds to
the special case h = 0, k = K.
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Theorem 1. Let c(·) and r(·) be two measurable positive functions defined
on Rh such that c(·)ηk(Bk(r(·))) ≡ 1. Define the transformation of RK in
itself

φ(ζ) :=

{
(ζk,1, 0) if ζk,2 ∈ Bk(r(ζk,1)),

(ζk,1, ψk(ζk,2; r(ζk,1))) if ζk,2 /∈ Bk(r(ζk,1)).

Consider the density g defined on RK by

g(ζ) :=

{
fk(ζk,1)c(ζk,1) if ζk,2 ∈ Bk(r(ζk,1)),

f0(φ(ζ)) if ζk,2 /∈ Bk(r(ζk,1)),

and let τ(dζ) := g(ζ)ηK(dζ). Then τφ−1 = µ. Moreover, if f0 and fk are
continuous and c(ζk,1)fk(ζk,1) = f0(ζk,1, 0) for every ζ, then g is continuous.

Remark 1. When one has to deal with a target measure µ that has more
than two components, supported by a family of nested hyperplanes, one can
make use of Theorem 1 repeatedly. Suppose, for instance, that µ is given by

f0(θ)ηK(dθ) + f1(θ1,1)ηK−1(dθ1,1)δ1(dθ1,2) + . . .

. . .+ fK−1η1(dθK−1,1)δK−1(dθK−1,2) + fKδK(dθ).

One can first apply the theorem to the first two components, obtaining an
absolutely continuous measure and a transformation of RK in itself, say τ1

and φ1. If g1 is the density of τ1, one can then apply the theorem to the
measure

g1(ζ)ηK(dζ) + f2(ζ2,1)ηK−2(dζ2,1)δ2(dζ2,2),

to construct a measure τ2 with density g2 and a transformation φ2. Pro-
ceeding in this way, one finally obtains an absolutely continuous measure
τ = τK with density g = gK and a function φ := φ1 ◦ φ2 ◦ . . . ◦ φK such that
τKφ

−1 = µ. The pseudo-code of a simple algorithm that efficiently evaluates
gK and φ can be found in Petris and Tardella (2000).

Remark 2. The new density g of Theorem 1 can be imagined as a sort
of reshaping of the density f0 with largest support determined by the “em-
bedding” of another density supported on a restricted space. This reshaping
effect is less pronounced whenever the opening is made around a point with
high f0 density – keeping constant the value of the other density – or when
the other density is small relatively to f0. Geometrically this is explained by
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the fact that the radius function r(·) of the opening determined by ψk(·, r(·))
is related to the value of the two densities according to

f0(ζk,1, 0)

fk(ζk,1)
ηk(Bk(r(·))) ≡ 1.

This suggests that in order to obtain a more regular shape of the resulting
density g, one can reparameterizing f0 and fk so that their maximum is
attained at or near the origin. In the particular case of k = K, when fK is
a constant, this is particularly evident.

Suppose now that, instead of using a transformation φ of a simulated
Markov chain, one wishes to directly define a Markov kernel H with sta-
tionary distribution equal to the target distribution µ̄. A typical situation
where the availability of such a transition kernel is desirable is within a hy-
brid MCMC sampler, where µ is proportional to one of the full-conditional
distributions – see Section 3 for an example. An additional interesting mo-
tivation is provided in Section 4, where such a kernel is used to produce a
regenerative Markov chain. It turns out that the auxiliary absolutely con-
tinuous measure τ and the transformation φ introduced above can be used
to construct a transition kernel with the required property. In fact we show
how the sought for H can be constructed by combining a kernel K which
has τ̄ as its stationary distribution together with an extra kernel J , which is
essentially a conditional version of τ̄ , given φ. In order to give the result in
a general form, let (Z,SZ , τ) and (Θ,SΘ, µ) be probability spaces, and let φ
be a measurable function from Z onto Θ such that τφ−1 = µ. Let K be a
transition kernel on (Z,SZ) for which τ is invariant:

τ(B) =

∫
Z

τ(dζ)K(ζ;B) ∀B ∈ SZ .

Consider τ ∗(B | φ(ζ) = θ), a regular version of τ given φ−1SΘ, and define a
transition kernel J from Θ to Z by setting

J(θ;B) = τ ∗(B | θ).

Theorem 2. Consider a Markov chain θ̃0, θ̃1, ..., θ̃t, ... on (Θ,SΘ), whose
transitions are described by the following steps:

1. draw ζ̃t,0 according to J(θ̃t; ·);
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2. draw ζ̃t,1 according to K(ζ̃t,0; ·);

3. set θ̃t+1 = φ(ζ̃t,1).

Let H denote the corresponding transition kernel, i.e.

H(θ;A) =

∫
Z

J(θ; dζ)K(ζ;φ−1A) ∀θ ∈ Θ, A ∈ SΘ.

Then µ is an invariant measure for H.

As a special case, consider the setting of Theorem 1. In that case, it is easy
to show that a regular conditional probability τ ∗(B | θ) is the distribution
degenerate at (θk,1, ψ

−1
k (θk,2; r(θk,1))), when θk,2 6= 0, and the product of

the distribution degenerate at θk,1 for the first components and the uniform
distribution over Bk(r(θk,1)) for the last components, when θk,2 = 0.

3 Application to Bayesian model selection

From a Bayesian point of view, any inferential problem involving more than
one model – e.g. model selection, model averaging, variable selection in re-
gression etc. – can be approached by assigning a prior probability to each
model and, conditionally on each specific model, a prior distribution for the
parameters of the model. Any inference can then be based on the posterior
probabilities of the models and on the posterior distributions of the param-
eters of each model. Conceptually, the different models under consideration
are simply subregions of a unique inclusive model. Although straightforward
from a theoretical point of view, deriving the posterior from a prior and a
data set may not be easy. The source of most troubles is that the prior, and
therefore the posterior, does not have a density with respect to Lebesgue
measure on RK nor with respect to the counting measure on a countable
set. For example, if one wants to consider two distinct models only, with
n and m continuous parameters respectively, then the support of the prior
and posterior distributions is given by the disjoint union of Rn and Rm. An
important special case is that of nested models. In this case there is a max-
imal model and all the others are obtained by setting one or more of its
parameters to specific fixed values. Many research contexts are often mod-
elled through flexible nested model: polynomial regression, autoregressive
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time series with unknown order, finite mixture distributions with unknown
number of components, just to mention some.

In this section we present a simple numerical illustration of how the theory
developed so far can be usefully applied to Bayesian model selection, when
the models under consideration are nested.

We consider a linear model setting, with n × (p + 1) design matrix X,
where the first column of X is a column of ones. We will denote by Mk the
submodel corresponding to a design matrix obtained by eliminating the last
k columns of X (k = 0, . . . , p). The reduced design matrix will be denoted
by Xk. Note that Xk is an n× (p− k + 1) matrix – the subscript k refers to
the number of regressors dropped from the full model. The full model can
be written as

y ∼ N (Xβ, Iσ2),

and submodel Mk is obtained by setting the last k components of β to zero.
Within a Bayesian framework one needs to specify a prior probability that
charges all the p+ 1 events Hk = {β1 6= 0, . . . , βp−k 6= 0, βp−k+1 = . . . = βp =
0}, k = 0, . . . , p. These events correspond to a sequence of nested hyperplanes
in the parameter space. We define a prior distribution in a hierarchical way
as follows:

• given Hk and σ2, βk,1 = (β0, . . . , βp−k)
′ has a N (0, σ2Vk) distribution;

• given Hk, σ
2 has an IG(d/2, a/2) distribution;

• P (Hk) = αk.

Thus, the global prior distribution can be written as

dπ(β, σ2) =
(a/2)d/2

Γ(d/2)
(σ2)−(d+2)/2 exp

(
−a/(2σ2)

)
p∑

k=0

αk(2π)−(p−k+1)/2|Vk|−1/2(σ2)−(p−k+1)/2

exp
(
−β′k,1V −1

k βk,1/(2σ
2)
)

ηp−k+1(dβk,1)δk(dβk,2)η(dσ2).

Introducing the indicator functions

Rk(β) =

{
1 if β ∈ Hk,

0 if β /∈ Hk,
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and the σ-finite measure

dν(β, σ2) =

p∑
k=0

ηp−k+1(dβk,1)δk(dβk,2)η(dσ2),

one can define the prior density

f(β, σ2) =
dπ

dν
=

1

Γ(d/2)

p∑
k=0

Rk(β)αk(a/2)d/2(2π)−(p−k+1)/2|Vk|−1/2

(σ2)−(d+p−k+3)/2 exp
(
−Qk/(2σ

2)
)
, (3)

with
Qk = β′k,1V

−1
k βk,1 + a.

The likelihood of the parameters is the standard one from linear model theory,
namely

L(β, σ2) = (σ2)−n/2 exp
(
−(y −Xβ)′(y −Xβ)/(2σ2)

)
.

The posterior density, which can be found using Bayes theorem, is therefore
equal to

f(β, σ2 | y) ∝ L(β, σ2) · f(β, σ2)

∝
p∑

k=0

Rk(β)αk(2π)−(p−k+1)/2|Vk|−1/2

(σ2)−(d+n+p−k+3)/2 exp
(
−Q∗k/(2σ2)

)
∝

p∑
k=0

Rk(β)

[
|V ∗k |1/2αk

|Vk|1/2(a∗k/2)d∗/2

]
(a∗k/2)d

∗/2(2π)−(p−k+1)/2|V ∗k |−1/2

(σ2)−(d∗+p−k+3)/2 exp
(
−Q∗k/(2σ2)

)
(4)

with

Q∗k = (y −Xkβk,1)′(y −Xkβk,1) + β′k,1V
−1
k βk,1 + a

= (βk,1 −m∗k)′(V ∗k )−1(βk,1 −m∗k) + a∗k
V ∗k = (X ′kXk + V −1

k )−1

m∗k = V ∗k X
′
ky

a∗k = a+ y′y − (m∗k)
′(V ∗k )−1m∗k

d∗ = d+ n.
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Comparing (3) and (4) one can deduce that, in this simple conjugate con-
text, posterior model probabilities can be derived in closed form and are
proportional to the expressions in square brackets in (4), i.e.

P (Mk | y) ∝ |V ∗k |1/2αk
|Vk|1/2(a∗k/2)d∗/2

.

Hence, in this setting, we have the opportunity to compare exact posterior
model probabilities with MCMC estimates derived through different meth-
ods.

Let us start by describing a new computational strategy based on the
results of the previous section. An approximation of the posterior distribution
can be obtained by running a Gibbs sampler, sampling σ2 and β in turn,
each from its full conditional distribution. One easily obtains that the full
conditional distribution of σ2 given β when β ∈ Hk (i.e. model Mk is visited)
is IG((d∗+p−k+1)/2, Q∗k/2). On the other hand, the full conditional density
of β, with respect to

∑p
k=0 ηp−k+1(dβk,1)δk(dβk,2), is proportional to

p∑
k=0

Rk(β)αk(2πσ
2)−(p−k+1)/2|Vk|−1/2 exp

(
−Q∗k/(2σ2)

)
.

The repeated use of Theorem 1 together with Theorem 2 allows to reduce the
problem of sampling from this distribution to that of sampling from an ab-
solutely continuous distribution on Rp+1. This is basically accomplished by
replacing the full conditional distribution f(·|σ2) with an absolutely contin-
uous distribution τ(·|σ2), according to Remark 1 and then making use of the
appropriate corresponding transformation φ. More precisely one proceeds as
follows: according to Theorem 2 the current β is first randomly transformed
through J(β, ·) into, say, a current ζ̃ then a draw ζ̃new from a transition kernel
K(·, ·) preserving τ is realized using ARMS (Adaptive Rejection Metropo-
lis Sampling, see Gilks et al.; 1995) along a randomly selected straight line
passing through ζ̃ and, finally, ζ̃new is back-transformed to βnew by applying
the function φ, i.e. essentially undoing the sequence of hyperplane inflations
needed to construct τ . A particularly appealing feature of this sampler is
that it completely avoids the need to specify a proposal distribution and also
to compute any Jacobians.

For comparison, we also implemented a Reversible Jump sampler, since
Reversible Jump is probably the most widely used approach to perform
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Model Exact RJ Sampler Our Sampler Our Sampler
Accellerated

M0 0.0099 0.014 0.0129 0.0099
M1 0.0249 0.032 0.0244 0.0212
M2 0.0940 0.122 0.0995 0.0929
M3 0.3466 0.350 0.3516 0.3508
M4 0.4943 0.461 0.4892 0.4939
M5 0.0302 0.022 0.0223 0.0313

Table 1: Simulation A: exact posterior model probabilities are compared to
those estimated by our sampler and by an implementation of the Reversible
Jump sampler. Models M6 through M9 have exact posterior probability less
than 10−4.

MCMC computations in varying dimensional models. Here are some im-
plementation details. At each sweep the sampler: (a) updates a randomly
selected βj within the current model, using Metropolis-Hastings algorithm;
(b) updates σ2, drawing it from its full conditional distribution and, (c)
jumps – provided the proposed move is accepted – to a model having one
more regressor, or one less regressor. In case a move to a larger model is pro-
posed, say from Mk to Mk−1, the βjs already included in Mk are kept fixed,
as well as σ2, and a proposal for the “new” parameter βp−k+1 is drawn from
the conditional distribution of βp−k+1 given β0, . . . , βp−k derived from the
distribution of the Maximum Likelihood estimates of (β0, . . . , βp−k, βp−k+1)
in Mk−1.

In order to assess the performance of our computational strategy we
used two simulated data sets. In both we set p = 9 and we used an
n × p matrix of covariates and n observations from the linear model, us-
ing β = (6, 5, 4, 3, 2, 1, 0, 0, 0, 0)′ and σ2 = 1. The true model is therefore
M4. The only difference between the two data sets is that in simulation A
we chose n = 200 as sample size, while in simulation B we chose n = 100.
In the prior distribution we took mk to be zero, Vk to be the identity matrix
of the appropriate order, a = d = 0.01. Finally, we assumed the models to
be a priori equally likely. Table 1 and Table 2 report the MCMC estimates
of posterior model probabilities based on runs of 100000 iterations of our
sampler; Figure 2 shows the ergodic means of model probabilities.

We decided to implement Reversible Jump as a benchmark for a compar-
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Model Exact RJ Sampler Our Sampler Our Sampler
Accellerated

M0 0.039 0.087 0.0730 0.0378
M1 0.077 0.122 0.1052 0.0960
M2 0.181 0.220 0.2016 0.1751
M3 0.186 0.195 0.1782 0.1761
M4 0.420 0.322 0.3839 0.4225
M5 0.097 0.055 0.0730 0.0924

Table 2: Simulation B: exact posterior model probabilities are compared to
those estimated by our sampler and by an implementation of the RJ sampler.
Models M6 through M9 have exact posterior probability less than 10−4.

ative analysis. Of course every computational comparison has its pitfalls and
it may give different answers according to the chosen perspective. Anyway,
we believe this is a useful objective starting point to give an idea of possi-
ble competitive features of a new simulation strategy when compared with
existing techniques.

If one looks at the computation time for each iteration as a criterion, our
method definitely run in a longer time. Note, however, that this does not
take into account that the two methods can reach convergence in a different
length of time. The relative slowness was of course expected in so far as
the simulation target is always supported by a subspace of maximal dimen-
sion. But the main reason accounting for this time consumption is that our
sampling strategy didn’t exploit the structure of the model as in fact the
proposed RJ sampler did. Anyway, computational time should not be the
only concern when the precisions of the methods under investigation differ
significantly.

In fact, as one can grasp from Table 2, the RJ sampler – somewhat surpris-
ingly – didn’t perform satisfactorily in Simulation B; for instance the largest
exact posterior probability corresponding the true model M4 is grossly under-
estimated (about 25%) after 100000 iterations. We originally thought that
this was due to the fact that convergence was not achieved and that the chain
should run for more iterations. This was not confirmed since we performed
different chains with 106 iterations obtainig actually the same results and no
diagnostic evidence of convergence trouble according to the procedure pro-
posed in Brooks and Giudici (1999, 2000); Castelloe and Zimmerman (2002).
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If we have to sum up the comparative performance with the two simulated
data sets fixing the same amount of iterations we can conclude that our
method shows a faster convergence and a better precision.

In the attempt to see if our strategy could be speeded up we devised
the following modification aimed to approximate the exact posterior proba-
bilities: if one overweight artificially the full model density f0, say f ′0(·) =
W · f0(·), so that the corresponding estimated probability is relatively high
(say about 0.75) then one could exploit the conjugacy property of the single
full model to make a natural proposal distribution for the modified density
g corresponding to τ . Hence with a correct Metropolis-Hasting acceptance
probability this produces a faster simulation scheme with the reweighted tar-
get as invariant distribution. The geometric intuition behind this idea is that
the transformed density g should then be a not-so-radical reshaping of the
original f0 and this explains why the original full-conditional can represent
a good proposal. The simulation scheme using this reweighted f ′0 has as
limiting distribution that differs from the desired one only in the artificially
changed weighting system. Of course one can easily underweight the result-
ing estimates of all the visited submodels to get correct estimates of the
original posterior probabilities. In fact, this strategy proved itself effective in
giving precise estimates and saving a good deal of computational time with
a very little tuning effort to guess an appropriate weighting constant W as
shown in the last column of Table 1 and Table 2.

Let us stress that the most important distinguishing feature of our basic
strategy is the absence of researcher expertise to get the method work. This
can well pay-off some extra computational time at least when this turns out to
be available. Also, with this automatic procedure requiring basically only the
density functions and, possibly, locations with high density, a considerable
amount of programming and debugging time can be saved.

4 Application to regenerative Markov chain

Suppose that an MCMC scheme has been implemented for approximating a
target distribution

π(A) ∝
∫
A

f0(θ)ηK(dθ)

through the realization of an ergodic Markov chain with π as stationary
distribution. Let us denote with Qw the corresponding Markov kernel. Here
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we exploit the result of Brockwell and Kadane (2002, Theorem 2.1) where
it is shown how to construct a regenerative Markov chain with the same
stationary distribution π simply relying on a Harris recurrent Markov chain
with limiting distribution

π∗(A) = (1− λ)π(A) + λI{0}(A). (5)

The regenerative chain is then exploited to give an estimation of the standard
errors of the MCMC estimates of features of π. We refer to their paper for
implementation details. Here we show how the results of Theorem 1 and
Theorem 2 can be combined to obtain a new final algorithm, different from
that of Brockwell and Kadane, for constructing the basic ingredient, i.e. a
Markov chain with (5) as limiting distribution.

One immediately realizes that the mixture π∗ in (5) is actually of the
form (1), i.e. proportional to a finite measure that can be written as

µ(dθ) = f0(θ)ηK(dθ) + fKδK(dθ).

Of course the constant fK and the mixing weight λ are functionally related
by

λ =
fK∫

RK
f0(θ)ηK(dθ) + fK

so that, fixing either one, the other is automatically determined.
Hence Theorem 1 can be used to define the appropriatey measure τ and

the function φ so that µ = τφ−1. Let us denote with K(·, ·) an appropriate
Markov kernel so that τ is invariant for K(·, ·). Keeping this notation we
can use Theorem 2 to get a Markov kernel H(·, ·) so that µ is the invariant
distribution.

The only thing to discuss at this point is about guidelines for a working
procedure. Notice that we have degrees of freedom in choosing λ or, equiv-
alently, fK . Also, no mention has been made so far about how to construct
an appropriate K(·, ·) to approximate τ .

In our limited experience the following suggestion is likely to be effective.
From a pilot run of the original working kernel Qw used for approximating
π, one can get an idea where the “center” x∗ of π is located and how large is
the total mass

∫
RK

f0(θ)ηK(dθ) so that one can set an appropriate mass fK in
order to have a corresponding small weight λ, let us say approximately equal
to 10−3. Also, without loss of generality let us admit that f0 is such that
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x∗ is located at the origin, otherwise reparameterize accordingly through
a translation. In order to easily get a Markov kernel to simulate from a
distribution proportional to τ one can rely on a Metropolis-Hasting scheme
using Qw as a basis to construct an appropriate proposal. In fact having
fixed fK so that λ is approximately equal to 10−3 then one can expect that
the measure τ is not very different from the original f0. Geometrically only
a relatively “small” opening around the origin (a point corresponding to
a high density f0) has to be made to accomodate for the mass fK . Let us
denote with K(·, ·) the Markov kernel just derived through this Metropolized
scheme.

mc-estimate rmc-s.e. low upp
logα 0.979318 0.000440 0.978438 0.980198
log β −0.022342 0.000010 −0.022362 −0.022321

logit γ 1.895405 0.000854 1.893696 1.897113
σ2 0.008617 0.000004 0.008609 0.008625

Table 3: Petris & Tardella Method: from about 107 original iterations run in
about 7,5 hours 3193 tours were obtained with average tour length of about
3128; the estimated coefficient of variation of tour length divided by total
length was 0.000331

Now we describe in detail how we implemented this idea to the Dugong
dataset used in Brockwell and Kadane (2002), originally taken from Ratkowsky
(1983). The data consist in measurements of length (Y ) and age (X) of 27
dugongs, and the following regression model is considered:

Yi ∼ N (µi, σ
2)

µi = α− βγXi ,

with unknown parameters α > 0, β > 0, γ ∈ (0, 1) and σ2 > 0. Prior
specification for a Bayesian analysis has been chosen as

α ∼ N (0, 10000)

β ∼ N (0, 10000)

γ ∼ U(0, 1)

σ2 ∼ IG(0.001, 0.001)

16



For approximating posterior quantities releative to

π(α, β, γ, σ2|data)

Brockwell and Kadane implemented a simple MCMC strategy consisting of
an hybrid Gibbs-Metropolis with sequential draws from (respectively) the
full-conditionals of α, β and σ2, while for the γ component a simple Metropo-
lis step with independent uniform proposal is used instead of its (unavailable)
full-conditional. This corresponds in our previous notation to the working
kernel Qw used to simulate a Markov chain with π(α, β, γ, σ2|data) as lim-
iting distribution. Similarly, to get the Markov kernel K(·, ·) mentioned in
Theorem 2 we use the same full conditionals of f0 (here corresponding to π)
for α, β and σ2 and an independent uniform, for γ, as Metropolis proposals
to simulate from the corresponding full-conditionals of the auxiliary density
g corresponding to τ and accept the proposed draws with the probability
that ensures that τ is stationary for K(·, ·).

mc-estimate rmc-s.e. low upp
logα 0.978697 0.000440 0.977816 0.979578
log β −0.022591 0.000010 −0.022611 −0.022570

logit γ 1.888902 0.000859 1.887184 1.890620
σ2 0.008615 0.000004 0.008608 0.008623

Table 4: Brockwell & Kadane Method: from 107 original iterations, run in
about 10 hours, 3422 tours were obtained with average tour length of about
2921; the estimated coefficient of variation of tour length divided by total
length was 0.000398

In order to compare our strategy with that of Brockwell and Kadane – the
results are displayed in Table 4 and Table 4 – we calibrated the tuning weight
λ of their method to get approximately the same expected tour length. Both
procedures were written in R (Ihaka and Gentleman; 1996). The parameter
estimates and estimated standard errors are very close for the two methods,
as was to be expected, and computing time is reduced by about 25% using
our approach. From a general point of view, an appealing feature of our
strategy is that it relies on a geometric understanding of the modified chain
and avoids the use of a multinormal distribution to guess the shape of f0 as
suggested in Brockwell and Kadane.
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5 Concluding remarks

In this paper we have introduced some theoretical results which form the
basis for a new strategy for simulating from mixture distributions with com-
ponents being supported on subspaces of different dimension. The potential
of these results has been illustrated in two relevant situations: (1) Bayesian
inference for nested linear models; (2) contruction of regenerative Markov
chains for evaluating the standard error of MCMC estimates. In the first
example the attention is focused on comparing the behaviour of the pro-
posed techniques with an alternative RJ strategy in a controlled context
where the posterior analysis has an exact analytical answer. The numerical
results stress once again the importance of enlarging the pool of available
computational techniques for coping with inference on varying dimensional
parametric spaces.

Rather than illustrating the effectiveness of our proposal in other more
sophisticated nested models, we preferred to justify the usefulness of the
theoretical results in the different context of building regenerative Markov
chains. In the same spirit of the approach of Brockwell and Kadane (2002),
we conceived indirectly a Markov chain on RK with an artificial atom in a dif-
ferent way from the well known splitting technique of Nummelin (1978), just
by adjusting its invariant distribution and restating it in equivalent form. In
fact we have started from a mixture distribution on RK , to be interpreted as
the invariant measure of the ergodic chain, and through techniques standard
in MCMC we derived a Markov chain where the artificial atom is phisically
visualized within the original space. The main difference with the original
splitting technique is that no minorization condition is used in the construc-
tion, which in fact is also true for Brockwell and Kadane’s construction.

It has been shown elsewhere (Petris and Tardella; 2000) that other less
trivial nested models, such as autoregressive time series, can be addressed
with the technique presented here; other interesting applications to normal
and binomial mixture models will be explored in a forthcoming paper.

As far as comparison with RJ or other existing alternatives, we didn’t aim
at proving the absolute superiority of our method in terms of computational
time and efficiency. We showed that our method lends itself more easily to an
automatic implementation which may be slower in terms of computational
time but sometimes can reveal itself safer than a RJ implementation which is
not carefully designed and monitored. We also showed that we can improve
on computational time just working on a faster MCMC strategy for simu-
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lating from a distribution which is absolutely continuous with respect to the
Lebesgue measure, and for which a geometric intuition of its shape can be
derived.

Appendix

Proof of Theorem 1. Writing ψk in polar coordinates, it is easy to check that,
for any fixed r, it preserves Lebesgue measure. As a consequence, the Jaco-
bian of the transformation φ is one. Consider two Borel sets A1 and A2 in
R
h and Rk respectively. If 0 /∈ A2, then

τφ−1(A1 × A2) = τ({ζ : φ(ζ) ∈ A1 × A2})

=

∫
{ζ:φ(ζ)∈A1×A2}

g(ζ)ηK(dζ)

=

∫
{ζ:φ(ζ)∈A1×A2}

f0(φ(ζ)) ηK(dζ)

=

∫
A1×A2

f0(θ) ηK(dθ)

= µ(A1 × A2).

On the other hand, if A2 = {0}, then

τφ−1(A1 × A2) = τ({ζ : φ(ζ) ∈ A1 × A2})

=

∫
{ζ:φ(ζ)∈A1×A2}

g(ζ)ηK(dζ)

=

∫
{ζ:ζk,1∈A1,ζk,2∈Bk(r(ζk,1))}

fk(ζk,1)c(ζk,1) ηK(dζ)

=

∫
A1

fk(ζk,1)c(ζk,1)
(∫

Bk(r(ζk,1))

ηk(dζk,2)
)
ηh(dζk,1)

=

∫
A1

fk(ζk,1)c(ζk,1)ηk(Bk(r(ζk,1))) ηh(dθk,1)

=

∫
A1

fk(θk,1) ηh(dθk,1)

= µ(A1 × A2).
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The two equalities imply that for any Borel set A in RK , τφ−1(A) = µ(A).
Continuity of g, under the specified additional assumptions, is straightfor-
ward.

Proof of Theorem 2. For every B ∈ SZ one has∫
Θ

µ(dθ)J(θ;B) =

∫
Z

τ(dζ)J(φ(ζ);B) = τ(B).

Therefore, ∫
Θ

µ(dθ)H(θ;A)

=

∫
Θ

µ(dθ)

∫
Z

J(θ, dζ)K(ζ, φ−1A)

=

∫
Z

τ(dζ)K(ζ;φ−1A)

= τ(φ−1A) = µ(A).
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Figure 2: Ergodic means of model probabilities. Top row: simulation A;
bottom row: simulation B. Left column: RJ; right column: our sampler.

23


